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Abstract. We survey some recent progress on the problem of determining a con­
ductivity or a potential by measuring the elliptic Dirichlet-to-Neumann map for the 
associated conductivity equation or the Schrödinger equation. We make emphasis 
on the new results obtained on open problem 2 stated in [21] which concerns with 
the case that the measurements are made on a strict subset of the boundary. 

1 Anisotropie Conductivities 

My leetures at the EuroSummer Sehool were about the anisotropie inverse 
eonduetivity problem. We start this seetion by deseribing the problem. We 
also state and sketch the proof of some reeent results of [12] and [13]. 

Let D c::: jRn be a bounded domain with smooth boundary. Let '"'( = 

h ij (x)) be t.he elect.rieal eonduetivity of D whieh is assumed to be a positive 
definite, smooth, symmetrie matrix on n. Muscle tissue in the human body 
is a prime example of an anisotropie eonduetivity sinee the eonduct.ivity in 
the transverse direction (for cardiae muscle this is 2.3 mho) is quite different 
from that of the longitudinal direct.ion (for eardiae muscle this is 6.3 mho). 

Under the assurnption of no sources or sinks of eurrent in D, the equation 
for the potential, given a voltage potential f on oD, is given by the solution 
of the Dirichlet problem 

(1) 

The Diriehlet-to-Neumann map (DN) is defined by 

(2) 

where v = (vI, ... , v n ) denotes the unit outer normal to oD and v, is the 
solution of (1). A'Y is also called the voltage to current map sinee A'Y (1) 
measures the indueed eurrent flux at the boundary. 

The inverse problem is whether one ean determine '"'( by knowing A'Y' 
Calderon proposed this problem in [5] and obtained the first results in the 
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multidimensional case. It arose originally in geophysics [23]. More recently 
this inverse problem has been proposed as a valuable diagnostic tool in 
medicine (see for instance [2]) and it has been called elect'rical irnpedance 
tornogmphy (EIT). Unfortunately, A"y doesn't determine I uniquely. This ob­
servation is duc to L. Tartar (see [11] for an account). To verify this we define 
first the Dirichlet integral associated to a solution of (1). Let 

(3) 

with u a solution of (1). 
A standard application of the divergence theorem givcs that 

Q"Y(f) = 1 A"Y(f)!dS, 
im 

(4) 

where dS denotes surface measure in 0[2. In other words, A"y is the linear 
operator associated to the quadratic form Q"y so that A"y alld Q"y carry the 
same information. 

Let 7jJ : [2 --'> [2 be a C= diffeomorphism withiPlan = Identity. Let 
v = u 0 7jJ-1. Then a straightforward calculation shows that v satisfies 

(5) 

where 

(6) 

Here D7jJ denotes the (matrix) differential of '1/), (D7jJ)T its transpose and the 
composition in (6) is to be interpreted as composition of matrices. 

By making the change of variables'/! = u 0 1/)-1 in the quadratic form (3) 
we see that 

Q:y (f) = Q,(f) (7) 

and thercfore A:y = A"y. 
We have found a large number of conductivities with the same DN rnap: 

any change of variables of [2 that leaves the boundary fixed gives rise to a llCW 
conductivity with the same elec:tric:al boundary measurements. The question 
is then whether this is the only obstruction to unique identifiability of the 
c:onduc:tivity. As we ontline below this is a problem of geometrical nature emd 
we proceed to state it in invariant form. 

Let (NI,g) be a compact Riemannian rnanifold with boundary. The Laplace­
BeItrami operator associated to the metric g is given in local coordinates by 

A _ 1 Ln 0 ( ~ ij Oll ) 
LlgU - ~. -;::;-. V uet gg ~ .. 

V det g ul:i ul: 
/.,j=1 .I 

(8) 
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where (gi j ) is the inverse of the metric g. Let us consider the Dirichlet problem 
associated to (1) 

ßgU = 0 on M, UI = f. 
öM 

(9) 

We define the DN map in this case by 

(10) 

The inverse problem is to recover 9 from Ag. 
By using a similar argument to the one outlined above we have that 

(11) 

where '!jJ is a Coo diffeomorphism of M which is the identity on the boundary. 
As usual 7/;* 9 denotes the pull back of the metric 9 by the diffeomorphism 7/;. 

In the case that M is an open, bounded subset of IRn with smooth bound­
ary, it is easy to see that ([12]) for n ~ 3 

(12) 

where 
(13) 

In the two dimensional case (12) is not valid. In fact in n = 2 the Laplace­
Beltrami operator is conformally invariant. More precisely 

for any function a, a =F o. Therefore we have that for n = 2 

(14) 

for any smooth function ü =F 0 so that alöM = 1. 
Now we give an invariant formulation of the EIT problem in the two 

dimensional case. In the Euclidean case a current is a one form given by 

i(.r) = 'f(x)du(x) 

where u is the voltage potential. Then, in two dimensions, the conductivity 'f 
can be viewed as a linear map from 1-forms to 1-forms. Now let (M, g) be a 
two dimensional Riemannian manifold. Let 'f be a positive definite symmetrie 
mapping (with respect to the inner product defined by the metric g) from 
1-forms to 1-forms. In this case (1) takes the form 

{ bhdU) = 0 in M 
UlöM = f 

(15) 
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where d denotes differentiation and 8 eodifferentiation with respect to the 
metrie g. 

The DN map is given by the I-form 

Ag"f = ,),dulaM. 

An argument similar to the one outlined above shows that 

Ag,.;", = A, 

(16) 

(17) 

for every diffeomorphism 'ljJ : M ----; M whieh is the identity at the boundary. 
Here 'ljJ*')' denotes the push-forward by the diffeomorphism 'ljJ of the one form 
')'. We remark that Riemannian met ries pull-baek naturally under smooth 
maps and eonductivities push-forward naturally under smooth maps. 

Now we are in position to state the main eonjectures. 

Conjecture A (n 2:: 3). 
Let (M, g) be a eompact Riemannian manifold with boundary. The pair 

(äM, Ag) determines (M, g) uniquely. Of course uniquely means up to an 
isometrie eopy. 

Conjecture B (n = 2). 
Let (M, g) be a eompaet Riemannian surfaee. Then the pair (äM, Ag) 

determines uniquely the eonformal class of (M,g). Uniquely means again up 
to an isometrie eopy. 

Conjecture C (n = 2) 
Let (M,g) be a eompaet Riemannian surfaee with boundary and ')' a 

positive definite symmetrie map from I-forms to I-forms on M. Suppose 
we know (M, g, äM, Ag,,) with Ag" defined as in (16), then we ean recover 
uniquely ')'. Uniquely means here up to an isometry whieh is the identity on 
the boundary as in (6) 

Abasie result whieh is used in all the anisotropie results stated below is 
the following Lemma proved in [12]: 

Lemma 1.1. (a) n 2:: 3. Let (M,g) be a compact Riemannian manifold with 
boundary. Then Ag determines the 0 00 -jet of the metric at the boundary 
in the following sense. If g' is another Riemannian metric on M such that 
Ag = Ag" then there exists a dijjeomorphism rp: M ----; M, rplaM = Identity 
such that g' = rp*g to infinite order at äM. 

(b) n = 2. Let (M, g) be a compact Riemannian manifold with boundary, 
then Ag determines the conformal class of the 0 00 -jet of the metric at the 
boundary. 

(c) n = 2. Let (M,g) be a compact Riemannian surface with boundary. 
Let')' be a positive definite symmetrie map from 1-forms to 1-forms. Then 
the mapping Ag", as defined in (6), determines the OOO-jet of the map ')' at 
the boundary in the following sense: If ')" is another such positive definite 
symmetrie map such that Ag" = Ag,," Then there exists a dijJeomorphism 
rp : M ----; M, rplaM = Identity such that ')" = rp*')' to infinite order at äM. 
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In other words Lemma 1.1 shows that Conjectures A, B, C above are 
valid at the boundary. The proof of this result is done in case a) by showing 
that Ag is a pseudodifferential operator of order 1. Its full symbol, calculated 
in appropriate coordinates, determines the COO-jet of the metric 9 at the 
boundary. The proofs of b) and c) are similar. 

Lassas and the author proved Conjecture A in the real-analytic case and 
Conjecture B in general [12]. Moreover these results assurne that Ag is mea­
sured only on an open sub set of the boundary. 

Let r be an open subset of 8M. We define for f, supp f t:;;; r 

The first result of [12] is: 

Theorem 1.2 (n :::: 3). Let (M, g) be a real-analytic compact, connected 
Riemannian manifold with boundary. Let r t:;;; 8M be real-analytic and as­
sume that 9 is real-analytic up to r. Then (Ag,r, 8M) determines uniquely 
(M,g). 

Notice that Theorem 1.2 doesn't assurne any condition on the topology 
of the manifold except for connectedness. An earlier result of [14] assumed 
that (M, g) was strongly convex and simply connected and r = 8M. 

The second result of [12] is the proof of Conjecture B assuming we only 
measure the DN map on an open subset of the boundary. 

Theorem 1.3 (n = 2). Let (M,g) be a compact Riemannian surface with 
boundary. Let r t:;;; 8M be an open subset. Then (Ag ,r,8M) detcrmines 
uniq7Lely the conformal class of (M,g). 

Sketch of proof of Theorem 1.2. M. Taylor simplified the arguments in 
the proof of this result used in [12]. His proof follows the same basic idea 
of [12] but avoids the use of sheafs in the details of the endgame of the 
proof. Using this method we wcre able to extend Theorem 1.2 to the case 
of complete Riemannian manifolds with boundary [13]. We include Taylor's 
proof of Theorem 1.2 below [20]. 

Let us assurne that we have two Riemannian manifolds (Mj , 9 j ), j = 1, 2 
satisfying the eonditions of Theorem 1.2 with r c 8Nlj open and real-analytie 
and Ag] Ir = Ag2 lr. 

Using Lemma 1.1 we can finel extensions M j of M j ~oss r, with real­

analytie metries, and there are neighborhoods Oj of r in M j that are isomet­

rie; write 0 1 = O2 = O. We write M j = MjUOj, with closure M j = MjUOj. 
Let llS set 

(18) 

The key point is to use the Diriehlet Green's kernel of M j with poles at 
points in U to eonstruet the desireel isometry between MI anel M 2 . 
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For y E U, solve 

We obtain maps 

9j : Mj ---> HS(U), for any s < 2 - n/2, (20) 

defined by 
9j(x)(y) = Gj(x, y), xE Mj , y EU. (21) 

If s < 1 - n/2 the maps 9j are of class Cl. Furthermore, these maps are 
real-analytic on the subsets M j . Note that 

(22) 

is given by 
(23) 

Lemma 1.4. The map D9j(x) is injective for each x E Mj . 

Proof. In fact, ifthis map annihilates a nonzero v E TxMj , then v·V xGj(x, y) 
= 0 for all y EU. This implies by real-analicity v . V x G j (x, y) = 0 for all y E 

Mj \ {x}. Taking y = x+c:v (using some local coordinate system) and noting 
the asymptotic behavior of Gj (x, x + c:v), we obtain a contradiction. D 

From this we obtain: 

Proposition 1.5. The map 9j : Mj ---t HS(U) is an embedding. 

Proof. It remains to show that Xl i- X2 in Mj =} 9j(Xl) i- 9j(X2)' If not, 
then 

(24) 

for all y E U, hence, by analyticity, for all y E Mj . Eut Gj(Xl,') is singular 
onlyat y = Xl, so this gives Xl = X2' D 

The crucial result is the following. 

Proposition 1.6. With the identijications 0 1 = O2 = 0 and Ul = U2 = U, 
we have 

91 = 92 on O. (25) 

Proof. What we are claiming is that 

(26) 

To see this, fix y E U and solve 
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Thc Dirichlet-to-Neumann hypothesis implies 

V'"Y(X) = V'xGI(X,y), for:r E r, (28) 

whieh in turn, by the unique continuation principle, gives 

(29) 

This implies V extends to M 2 \ {y}, and we have V(x) = G2 (x,y), giving 
(26). 0 

We aim to establish the following, which will imply Theorem 1.2. 

Proposition 1.7. Thp sets Q! (M]) and Q2(M2 ) are identical subsets 01 ffS(U). 

To show that QI(Md C Q2(M2), let B] be the set of points x E MI such 

that QI(X) E Q2(M2), let Cl be the interior of BI in MI, and let D I be the 

closure of Cl in M I :J3y Proposition 1.6, D I is not empty. It suffices to show 
that D I is open in M]. As a finit step, we have: 

Lemma 1.8. Given Xl E D I , there exists X2 E M 2 such that Q2(X2) 
QI(:Ct). 

Praof. We know there exist Pj E MI, qj ~ M 2 such that Pj --+ :;:1 and 

Q2 (qj) = QI (Pj ). If {qj} has a limit point in M 2, we can denote it X2 and we 

are done. The only alternative is that qj ----> M2. Then Q2(qj) --+ 0 in HS(U). 
This would give Q](Pj) --+ 0 in HS(U), and hence 

But in fact the strong maximum principle gives 

so this shows the alternative is impossible. 0 

To proceed, we can use the following simple extension of Proposition 1.5. 

Proposition 1.9. FOT· each nonernpty open set fl C U, the rnaps 

Qfl : M j ----> HS(fl) (s < 1 ~ n/2), (30) 

given by cornposing (21) with the operation 01 restr'lction to fl, are ernbed­

dings. These rnaps are Tcal-analytic on M j \ fl. 
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Note that, given Xj E M j , we have 

(31) 

where Tu denotes the tangent spaee at u. 
Now let us get back to Xl E D l . We have X2 E M2 with g2(X2) = gl(xd, 

henee 
(32) 

Piek fl disjoint from Xl (in MI) and from X2 (in M2), so gf is an analytie 
embedding in a neighborhood of Xj. Note that 

(33) 

is a finite-dimensional subspace of the Hilbert spaee HS(fl). Let .c denote 
a linear subspace eomplementary to V (e.g., the orthogonal eomplement of 
V with respeet to a eonvenient inner produet on HS(fl)). By the Implicit 
Function Theorem, gf(Md and gf(M2) are, near u, loeally graphs of real­
analytie functions 

(34) 

where 21 is an open set in V. Say u = (uo, ud E V EB.c. Then, by the definition 
of D l , Uo is on the boundary of an open set on whieh cf>l = cf>2, so it follows 
that cf>l = cf>2 on 21. 

Consequently any Xl E D l has a neighborhood whose image under gf is 
eontained in the image of gf. In view of (31) this implies D l is open in MI. 
This proves Proposition 1.7 and henee Theorem 1.2. As for Conjeeture C the 
only known result is the ease when M = fl is an open subset of IRn with 
smooth boundary and g = (8ij ) =: e is the Euelidean metrie. More preeisely 
we have 

Theorem 1.10 (n = 2). Let fl <:;;:; IRn be a bounded domain with smooth 
boundary. Let /'1, /'2 be two anisotropie eonduetivities so that 

Then there exists 'l/J : fl ---t fl dijJeomorphism with 'l/Jlan = Identity so that 

The proof of Theorem 1.10 follows from a eombination of the results of [15] 
and [17]. In [15] it was proven Theorem 1.10 for isotropie eonduetivities. One 
then uses the results of [17] to reduee the anisotropie ease to the isotropie 
one by using the analog of isothermal coordinates in this ease. The result 
is that given an anisotropie eonductivity, we ean find a diffeomorphism cP 
so that cP*/, is isotropie. We end by mentioning that the result of [15] uses 
eomplex geometrieal solutions, whieh will be diseussed in the next seetion. 
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for all eomplex frequencies p E Cn - 0, p' P = 0, not just large frequencies. For 
another eonstruetion of these solutions which allow Lipsehitz eonduetivities 
see [3] (the result of [15] works for C2 eonduetivities). Theorem 1.10 has 
been extended to anisotropie non-linear eonductivities in [16]. Alessandrini 
and Barrugo have studied a special ease of anisotropy with pieeewise analytic 
eonduetivities [1]. 

2 The Cauchy Data for the Schrödinger Equation 

The only ease of Conjecture A that has been settled in general is the isotropie 
ease in Euelidean spaee. Namely we have in the ease that M = n an open, 
bounded subset of IRn with a smooth boundary and the metrie g is given by 

% = a(x)8ij , a>O (35) 

where 8ij is the Kroneeker delta. The following result was proven in [18]. 

Theorem 2.1. Let n ~ IRn n ~ 3 be a bounded domain with smooth bound­
ary. Let g(i), i = 1,2 be two isotropie Riemannian metries satisfying (35). 
Then Ag! = A g2 implies gl = g2. 

The proof of this result proeeeds by proving a more general result by 
reducing the problem to eonsider the set of Cauehy data for solutions of the 
Sehrödinger equation (see [21] for more details). 

Let n ~ 3. Let q E LOO(n). We define the set of Cauchy data for the 
assoeiated Sehrödinger equation by 

Cq={(ulan,~~lan) I(Ll-q)u=Oonn, uEH1(n)}. (36) 

Theorem 2.2. Let qi E LOO(n), i = 1,2. Assume 

Then ql = q2· 

The proof of this result uses eomplex geometrical optics solutions of the 
Sehrödinger equation. Let q E Loo(lRn), n ~ 2 have eompaet support. Then 
for p E Cn , p' p = 0, Ipl suffieiently large, one ean eonstruet solutions to 

(,1- q)up = ° 
of the form 

(37) 

with 

(38) 
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for some C > 0 independent of p. 
The function 7/!q(x, p) solves 

(39) 

where 
Llp(u) = e-(x,p) Ll(e(x,p)u). 

The Schwartz kernel Gp of Ll;;l is the so-called Faddeev Green's kernel [7]. 
The following estimate was proved in [19] (n = 2), [18] (n :::: 3) for -1< b < 0 
and p E Cn - 0, p . p = 0: 

(40) 

Here H~ denotes the Sobolev space associated to the weighted L 2 space with 
norm given by 

Ilflli~ = J If(x)1 2 (1 + IxI 2)"dx. 

A natural quest ion is whether one can determine the potential by measur­
ing the Cauchy data on strict subsets of the boundary. The only result known 
beyond the case ofreal-analytic potentials was proven in [4]. We describe the 
result below. 

We first modify the set of Cauchy data to allow for more singular distri­
butions on the boundary. We define the function space 

HL1(fl) = {u E D'(fl) lu E L 2 (fl), Llu E L 2 (fl)}; 

HL1(fl) is a Hilbert space with the norm 

For u E H L1 (fl), we have ulan E H-~ (afl) and ~~ lan E H-~ (an). We 
define the set of modified Cauchy data far q E LOO(fl) by 

Cq = { (ulan, ~~ lan) E H-~ (afl) x H-~ (afl) I 

(Ll- q)u = 0 in fl, u E H L1 (fl)}. 

If 0 is not a Dirichlet eigenvalue of Ll- q in fl then Cq contains the graph 
of the Dirichlet-to-Neumann map Aq conventionally defined on H l / 2 (an) by 
the relation Aq (f) = ~~ I an' where u E H l (fl) is a solution to the problem 

(Ll - q)u = 0 in fl, ulao = f; 

i.e., {(f, Aq(f)) I fE H l / 2 (afl)} C Cq. 
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Fix ~ E S,,-l = {~ E IR", I~I = I}. We define 

8fl+(~) = {x E 8fll (v,~) > O}, 8fl_(0 = {x E 8fll (v,~) < O} (41) 

and far E > 0 

We also define the set of restricted Cauchy data 

Cq,E = {(ulan, 88u I. ,) 1 (L1 - q)u = 0 in fl, u E H L1 (fl)}. 
v dn_,c(t;) 

The main result of [4] is 

Theorem 2.3. Let n ::>: 3 and qi E LOO(fl), i = 1,2. Civen ~ E sn·-1 and 
c > 0, assurne that Cq, .E = Cq2 ,E· Then q1 = q2. 

Theorem 2.3 has an immediate consequence in Electrical Impedance To­
mography. We assume here now 1 is an isotropic conductivity, i.e, lij = 
l(x)6ij with 1 E C 2 (fl) is a strictly positive function on fl. The Dirichlet­
to-Neumann map is defined in this case as follows: 

A,U) = (,~~)Ian 
where u solves 

div l\lu = 0 in fl, ulan = f. 
It is easy to see that A, extends to a bounded map 

A, : H-~ (8fl) ---+ H-~ (8fl). 

As a direct consequence of Theorem 2.3 we prove 

Corollary 2.4. Let li E C 2(fl), i = 1,2, be strictly positive. Civen ~ E sn-1 
and c > 0, assurne that 

Then 11 = 12· 

As far as we know, Theorem 2.3 (Corollary 2.4) is the first global unique­
ness result for the Schrödinger equation (conductivity equation) in which the 
Cauchy data are given only on part of the boundary, beyond the case of 
a real-analytic potential. 

A natural way to attack the problem of finding a potential from partial 
information of the Cauchy data is to construct solutions of the form (37) 
with Viq = 0 on part of the boundary. As it is shown in [9] it is impossible 
in general to solve the Dirichlet problem for (39) with 'l/ip decaying (or cven 
polynomially bounded in p.) In [4] it is shown that we can prescribe Dirichlet 
conditions for 1/Jp on particular subsets of the boundary. More precisely we 
have 
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Lemma 2.5. Let n 2: 2. Let p E Cn with p. p = 0 and p = T(~ + iTJ) with 
~,TJ E sn-I. Suppose that f(',p/lpl) E W 2,OO(n) satisfies Od = Ord = 0, 
where Oe denotes the directional derivative in the direction ~. Then we can 
find solutions to (..:1 - q)u = 0 in n of the form 

u(x,p) = e(x,p) (t(x, I~I) + 1/J(x,p)) , 1/JlasL(e) = 0, 

with 
C 

111/J(-, p)llL2cn) ~ -, T 2: TO, 
T 

for some C > 0 and TO > O. 

The proof of Theorem 2.3 and Lemma 2.5 uses Carleman estimates for the 
operator ..:1p , which is not an elliptic operator if we consider the dependence 
on the parameter p, to construct the solutions and prove the main result. 
The use of a linear phase function in these Carleman estimates gives rise to 
the restriction on measuring the Cauchy data on particular subsets of the 
boundary. 

Theorem 2.6. For q E LOO(n) there exist TO > 0 and C > 0 such that for 
all u E C2 (D), ulan = 0, and T 2: TO we have the estimate 

T21Ie-T(x,e)uI2dx+T { (~,v)le-T(X,e)o"uI2dS 
n Jan+ 

~ C (l,e-T(x,e) (..:1 - q)ul2 dx - T hn_ (~, v) le-T(x,e) o"ul2 dS) . 

Sketch of the Proof of Theorem 2.3 
As before we let ~ E sn-l. Fix k E jRn such that (~, k) = O. Using 

Lemma 2.5, we choose a solution U2 E H,:1.(n) to (..:1- q2)U2 = 0 in n of the 
form 

with 
.k + l 

P2 = T~ - z-2-' 

where (l, k) = (l,~) = 0 and Ik + W = 4T2 (with these conditions P2 . P2 = 0). 
In dimension n 2: 3 we can always choose such a vector l. Since Cq1 ,c = Cq2 ,c, 
there is a solution Ul E H,:1.(n) to (..:1- qdUl = 0 in n such that 

oU11 oU21 
ov an_,ecel = ov an_,ecel' 

Let us denote u := Ul - U2 and q := ql - q2. We have 

(..:1 - qdu = qU2 in n, ulan = O. 



On the Local Dirichlet-to-Neumann Map 273 

It is easy to see that ulan = 0 and u E H~(f2) implies that u E H 2 (f2'). Also 
Green's formula is valid for v E H~(f2). Thus we obtain 

N ow, we choose 

iJ = e(x,Pl)(l + 'ljiqJ:r,Pl)) 

as in (36) to be a solution to (,1 - qdiJ = 0, where 

k -l 
PI = -7~-i--

2 

with ~, k, and l as before so that PI . PI = O. Notice that with this choice of 
Pj, j = 1,2, we have 

PI + P2 = -ik. 

With these choices of U2 and v, the identity (51) now reads 

( 44) 

The final step in the proof is to show that the right hand side of (44) g;oes to 
o as 7 ----+ 00. 

By hypothesis, 

Then we have 

r 8u iJ dS = r 8u iJ dS = r 8u iJ dS. 
Jan 8v Jan\an_,o 8v Jaf2+,o 8v 

The Cauchy-Schwarz inequality and the estimate II'ljiq,llc(an) ::; C7 1/ 4 , which 
follows from (40) and the Sobolev embedding theorem, yields 

(45) 
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for some C > O. Now we use the Carleman estimate of Theorem 2.6 to obtain 

TC ( le-T(~,X) öv ul 2 dS ::; 7 { (~, x) le-T(~,X) öv ul 2 dS 
laD+. E laD+ 

::; in le-T(~,X) (L\ - q1)u1 2 dx 

= in le-T(~,X)qu212 dx 

::; 2(llqI!lv"'CD) + Ilq21Ivx>cm)2(1 + 11'lj;2111,2(D))' 

Hence, we have proved that 

I r öu v dsl ::; C7- 1/ 4 -+ 0, T -+ 00. 
laD ÖV 

Now letting 7 -+ 00 gives 

in e-i(x,k) q(x) dx = 0 

(46) 

for all k ..l ~. Changing ~ E sn-1 in a small conic neighborhood and using the 
fact that q( k) is analytic we get that q = 0 finishing the proof of Theorem 2.3. 

Sketch of Proof of Corollary 2.4. 
It is weIl known that we can reduce the problem to the case of the 

Schrödinger equation using the transformation w = 'Y~u. If u solves (42), 
then w solves 

(L\ - q)w = 0 in D 

with q = L1jl. It is easy to see that 

Now Kohn and Vogelius showed in [10] that given any open subset r of öD, 
if we know Ay(f)lr for all f then we can determine 'Ylr and ~~ Ir, reducing 
therefore the proof of Corollary 2.4 to Theorem 2.3. 

Conjecture D 
It is natural to expect that one needs to only measure the following subset 

of the Cauchy data to recover the potential. Let r be an arbitrary open subset 
of the boundary. We define 

Cq,r={(ulaD,~~lr) I (L\-q)u=OinD, UEHL1 (D)}. (47) 

The conjecture is that if we know Cq,r then we can recover the poten­
tial q. It would also be interesting to prove stability estimates and give a 
reconstruction of the potential under the conditions of Theorem 2.3. 
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3 Semiclassical Complex Geometrical Solutions 

As it was noted in the previous :section we cannot solve the Dirichlet prob­
lem for 1/)p sati:sfying (39) with polynomial contral on the growth of 1/) far p 
large. However, in [6] it i:s shown that we can con:struct appraximate complex 
geometrical solutiom, of the Schrödinger equation concentrated near planes 
far large complex frequencies. In SCHne :sen:se these are analog of Gaussian 
bearns far the case of standard gcometrical optic:s and they can be considered 
alS "semiclassical :solutions" for the complex principal type operator Llp . It is 
also shown in [6] that by measuring the Cauchy data of these approximate 
solution:s on a neighborhood of the intersection of a plane and the boundary 
one can determine the two plane tran:sfarm of the potential [8]. We define by 

z = {p E Cn ~ 0 : p' P = O}, 

the (complex) characteristic variety of .,1. Each P E Z can be written alS 
P = Ipl~ = ~lpl(WR + iWI) E ]PI. . (sn-1 + iSn- 1), with WR . WI = O. For 
pE Z, let Llp = .,1 + 2p· \7. Then 

( 48) 

:so that, with 11(.1':) = e(x,p)u(x), 

(Ll p ~ q(x))u(x) = w(;r) q (.,1 ~ q(x))v(x) = e(x,p)w(x) (49) 

and, in particular, (Llp ~ q(x))u(:r) = 0 q (Ll ~ q(x))v(x) = O. 
Now, given a potential q(x) and a two-plane II, we will constmct an 

approximate solution uapp to the Schröding(,r equation supported near II. 
We denote by dArr two-dimensional Lebesgue measure on II. We also recall 
the definition of the variant of dArr relative to [2 for the case that 3n is Cl 
and II intersects 3[2 transversally (far the general case see [6]), 

< dAfLJ >=< dArr,J· Xn > 

where Xa denotcs thc characteri:stic function of n. 

Theorem 3.1. Let n be a bounded domain with smooth boundary and q(:r) E 

H S ([2) for some s > ~. Then, Jor any 0 < (3 < ~ fixed, the Jollowing holds: 
=3 E > 0 s71ch that, Jor any p = ~lpl(WR + iWI) E Z and any b1Jo-plane II 
parallel to IIo = span{wR,wJ}, we can find an approximate solut'lon ?lapp = 
uapp(:r:, p, II) to (Llp ~ q(:r))u = 0 satisJying 

IluappllL"(IR") :::; C, Iluapp IIL2(n) ~ [A}i(II n [2)]& as Ipl --+ 00 (50) 

:supp (uapp ) C {x E]PI.": dist (x, II) :::; Ip~ß } (51) 
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and 

(52) 

In fact, as will be seen below, uapp = Uo + Ul with Uo depending only on Il 
and Ipl and satisfying (50.) 

We then modify Uo suitably to satisfy the other conditions. 

Remark Let E be as in Theorem 3.1. Let -1 < 0 < O. By using the estimate 
(40) for Faddeev's Green's kernel we can construct a true solution U of (L1-
q)u = 0 in D of the form 

u = Uo + Ul + U2 with Ilu211H8' :s: C!pl-I-SE, O:s: s:S: 1. (53) 

where the constant C > 0 depends only on IlqIIL~' and the diameter of D. 

Sketch of proof of Theorem 3.1 
We use the rotation invariance of L1 and the invariance of Zunder SI = 

{eil1 }, and note that it suffices to treat the case p = Ipl(el + ie2), where 
{eI, ... , en } is the standard ort ho normal basis for jRn. Write x E jRn as 
x = (x', x") E jR2 X jRn-2 and similarly ~ = (CC). 

If Il is parallel to span{wR,wI} = span{eI,e2} = jR2 X {O}, then Il = 
span{ eI, e2} + (0, x~) for some x~ E jRn-2. Given Ipl > 1 and x~ E jRn-2, wc 
will define an approximate solution u(x, p, Il) to (L1 p - q(x))u = 0 on jRn, of 
the form u(x, p, Il) = uo(x, p, Il) + Ul (x, p, Il). 

For notational convenience, we will usually suppress the dependence on 
p and Il and simply write u( x) = Uo (x) + Ul (x). We will use various cutofl" 
functions Xj, for j even or odd, Xj will always denote a function of x' or x", 
respectively. Also, B rn (a; r) and srn-l (a; r) will denote the closed ball and 
sphere of radius r centered at a point a E jRm. 
Construction of Uo 

To define uo, first fix Xo E CÜ (jR2) with Xo == 1 on B2(0; R) for any 
R > sup{lx'l : (x', x") E D for some x" E jRn-2}; let Co = IIXoIIL2(JR2). 
Secondly, let Wl E Cü (jRn-2) be radial, non-negative, supported in the unit 
ball, and satisfy 

ln-2 (Wl (x") )2dx" = 1. 

Now, for ß > 0 to be fixed later, we let 0 be the small parameter 0 = Ipl-tl 
and define 

so that 

(55) 
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Set uo(x) = uo(x',xl!) = XO(X')Xl(XI!); then Uo is real, IluollL2(IRn) = Co 
and IluollL2(s]) ----+ [All (ll n D)]! as 6 ----+ 0+, i.e., as Ipl ----+ 00. Note also 

that IluollHl ::; C6~1 = clplß, so that IluollHs ::; clplsß for 0 ::; s ::; 1. Since 
.dp =.d + 2p· \7 =.d + 2lpl(el + ie2)' \7 =.d + 41p18x' and plJRn~2, 

(.dp - q(x))uo = (.dXo) . Xl + 2(\7Xo) . (\7xd + xo(L1xd 

+2(p· \7)(XO)x1 + 2Xo(p, \7)(xd - qXOXI 
= Xo(x')(.dxlI - q)(xd(xl!) on B2(0;R) x !Rn~2, 

the first and fourth terms after the first equality vanishing because (p . 
\7)(Xo) = 28Xo == 0 on B 2(0; R), and the second and fifth equaling zero 
because \7X1-L!R2. 
Construction of UI. 

To define the second term in the approximate solution, UI (x), we make use 
of a truncated form of the Faddeev Green's function, ep , and an associated 
projection operator. The operator .dp has, for p E Z, (fuH) symbol 

(56) 

and so for ~ = el + ie2, we have 

which has (fuH) characteristic variety 

E p = {~ E !Rn : ~1 = 0, I~ -lple21 = Ipl} (58) 

= {O} X sn~2((lpl, 0, ... ,0); Ipl) C !R~I X !R~2~1", 

The Faddecv Green's function is then defined by ep = (_(T(O~l)V E S'(!Rn ). 

We now introduce, for an EO > 0 to be fixed later, a tubular neighborhood of 

(59) 

as weH as its complement, Ti!, and let XTp ' XT;: be their characteristic func­
~ons. Define a projection operator, Pp, and a truncated Green's function, 

ep , by 

Pp!(O = XTp(~)' 1(0 and 

(Opf)I\(~) = XTrf'(O' [-(T(orlf(~) 

for ! E (!Rn). Note that .dpOp = I - Pp. 

(60) 

(61) 

Choose a 7/;3 E Co(!Rn~2), supported in Bn~2(0; 2), radial and with 7/;3 == 
1 on supp (1Jt), and set X3 (xl!) = 7/;3 ( x" ~x;; ). We now define the second term, 
Ul (x, p, 1I) in the approximate solution by 

(62) 
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and set u(x) = uo(x) + U1(X). Then U1 (as weH as uo) is supported in {x : 
dist (x,II)::; 28}, yielding (51). We will see below that Ilu111L2(Q)::; C!pl-' 

as Ipl -+ 00, so that the first part of (50) holds as well. To start the proof of 
(52), note that 

(Llp - q)(uo + ud 

= (Ll p - q)uo - (Ll p - q)XiJ:p((Llp - q)uo) 

= (Ll p - q)uo - X3(Ll p - q)Gp((Llp - q)uo) 

- [Ll p - q, X3]G p((Ll p - q)uo) 

= (Ll p - q)uo - X3(I - Pp)(Llp - q)uo - X3qG p(Ll p - q)uo 

- 2(\7X3 . \7 x" )Gp(Llp + q)uo - (LlX IIX3)Gp(Ll p - q)uo 

= X3 Pp(Llp - q)uo 

- [-qX3 + 2(\7X3 . \7 XII) - (Ll X"X3)]Gp(Ll p - q)uo 

on {2, since X3 == 1 on supp (xd. Now, since q1X3 E Loo , I\7X31 ::; C8- 1 = 

clplß and ILl x llX31 ::; C8-2 = clpl2ß, (52) will follow if we can show that for 
some E > 0, 

IIPp(Ll p - q)uollL2(Q) ::; C!pl-', 

IIID"IGp(Llp - q)uoIIL2(Q) ::; C!pl-ß-', and 

IIGp(Ll p - q)uollL2(fl) ::; Clpl-2ß-', 

(63) 

(64) 

(65) 

with C independent of Ipl > 1. Here D" denotes differentiation in the x" 
variables. The details of the proof of these estimates can be found in [6] and 
we omit then. 
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