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Abstract. We survey some recent progress on the problem of determining a con-
ductivity or a potential by measuring the elliptic Dirichlet-to-Neumann map for the
associated conductivity equation or the Schrédinger equation. We make emphasis
on the new results obtained on open problem 2 stated in [21] which concerns with
the case that the measurements are made on a strict subset of the boundary.

1 Anisotropic Conductivities

My lectures at the EuroSummer School were about the anisotropic inverse
conductivity problem. We start this section by describing the problem. We
also state and sketch the proof of some recent results of [12] and [13].

Let 2 C R™ be a bounded domain with smooth boundary. Let v =
(7% (z)) be the electrical conductivity of £2 which is assumed to be a positive
definite, smooth, symmetric matrix on 2. Muscle tissue in the human body
is a prime example of an anisotropic conductivity since the conductivity in
the transverse direction (for cardiac muscle this is 2.3 mho) is quite different
from that of the longitudinal direction (for cardiac muscle this is 6.3 mho).

Under the assumption of no sources or sinks of current in 2, the equation
for the potential, given a voltage potential f on 92, is given by the solution
of the Dirichlet problem

n

55 2 (98e) =0on 0

ig=1 (1)
ulag = f.
The Dirichlet-to-Neumann map (DN) is defined by
A=Y vy @)
K < Ozjlagn
i,j=1
where v = (v!,...,v") denotes the unit outer normal to 8f2 and w is the

solution of (1). A, is also called the voltage to current map since A.(f)
measures the induced current flux at the boundary.

The inverse problem is whether one can determine v by knowing A,.
Calderén proposed this problem in [5] and obtained the first results in the
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multidimensional case. It arose originally in geophysics [23]. More recently
this inverse problem has been proposed as a valuable diagnostic tool in
medicine (see for instance [2]) and it has been called electrical impedance
tomography (EIT). Unfortunately, A, doesn’t determine v uniquely. This ob-
servation is due to L. Tartar (see [11] for an account). To verify this we define
first the Dirichlet integral associated to a solution of (1). Let

_ - ijooy Ou %d 5
JUEDY Rt @

with u a solution of (1).
A standard application of the divergence theorem gives that

Qy(f)= [ A (f)fdS, (4)
Jog
where dS denotes surface measure in 0f2. In other words, A, is the linear
operator associated to the quadratic form @), so that A, and @, carry the
same information.
Let ¢ : £ — 2 be a C* diffeomorphism with Y|an = Identity. Let
v=mwuo1 ! Then a straightforward calculation shows that v satisfies

n
9 ~ 0 _
i,jZ;I o (%‘j WU,) =0 5)

vlge = f

where

~_ (DY) oyo (DY)
v—( RE )Ow b=y (6)

Here Dy denotes the (matrix) differential of ¢, (D)7 its transpose and the
composition in (6) is to be interpreted as composition of matrices.

By making the change of variables v = u o™ in the quadratic form (3)
we see that

Q5 (f) = Qy(f) (7)

and therefore A7 = A,.

We have found a large number of conductivities with the same DN map:
any change of variables of {2 that leaves the boundary fixed gives rise to a new
conductivity with the same electrical boundary measurements. The question
is then whether this is the only obstruction to unique identifiability of the
conductivity. As we outline below this is a problem of gcometrical nature and
we proceed to state it in invariant form.

Let (M, g) be a compact Riemannian manifold with boundary. The Laplace-
Beltrami operator associated to the metric g is given in local coordinates by

1 "9 - . Ou
A( u = A/ - 8
at Vdet g Z O0x; ( detgg 8:1:‘7> ()

ig=1
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where (g%) is the inverse of the metric g. Let us consider the Dirichlet problem
associated to (1)

Agu=0on M, wu =f (9)

oM

We define the DN map in this case by

SL
M) = 32 v g (10)

ij=1

The inverse problem is to recover g from A,.
By using a similar argument to the one outlined above we have that

Aw*g = Ag (11)

where 1) is a C™ diffeomorphism of M which is the identity on the boundary.
As usual ¥*g denotes the pull back of the metric g by the diffeomorphism .

In the case that M is an open, bounded subset of R™ with smooth bound-
ary, it is easy to see that ([12]) for n > 3

Ag = 4y (12)
where . - - .
gij = (det ¥*)7T2 (y9) 71, 47 = (det gr1) 2 (gs5) - (13)

In the two dimensional case (12) is not valid. In fact in n = 2 the Laplace-
Beltrami operator is conformally invariant. More precisely

1
Aag = EAg
for any function «, a # 0. Therefore we have that for n = 2
Aa(w*g) == Ag (14)

for any smooth function « # 0 so that alaym = 1.
Now we give an invariant formulation of the EIT problem in the two
dimensional case. In the Euclidean case a current is a one form given by

i(x) = y(z)du(z)

where u is the voltage potential. Then, in two dimensions, the conductivity v
can be viewed as a linear map from 1-forms to 1-forms. Now let (M, g) be a
two dimensional Riemannian manifold. Let v be a positive definite symmetric
mapping (with respect to the inner product defined by the metric ¢) from
1-forms to 1-forms. In this case (1) takes the form

d(ydu) =0in M

{ ulom = f (15)
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where d denotes differentiation and ¢ codifferentiation with respect to the
metric g.
The DN map is given by the 1-form

Ag,“/f = ’Ydublt% (16)
An argument similar to the one outlined above shows that
Agpy = Ay (17)

for every diffeomorphism v : M — M which is the identity at the boundary.
Here 9,y denotes the push-forward by the diffeomorphism ¢ of the one form
~v. We remark that Riemannian metrics pull-back naturally under smooth
maps and conductivities push-forward naturally under smooth maps.

Now we are in position to state the main conjectures.

Conjecture A (n > 3).

Let (M, g) be a compact Riemannian manifold with boundary. The pair
(OM, Ay) determines (M, g) uniquely. Of course uniquely means up to an
isometric copy.

Conjecture B (n = 2).

Let (M, g) be a compact Riemannian surface. Then the pair (OM, A,)
determines uniquely the conformal class of (M, g). Uniquely means again up
to an isometric copy.

Conjecture C (n = 2)

Let (M,g) be a compact Riemannian surface with boundary and v a
positive definite symmetric map from 1-forms to 1-forms on M. Suppose
we know (M, g,0M, A, ) with A, ., defined as in (16), then we can recover
uniquely . Uniquely means here up to an isometry which is the identity on
the boundary as in (6)

A basic result which is used in all the anisotropic results stated below is
the following Lemma proved in [12]:

Lemma 1.1. (a)n > 3. Let (M, g) be a compact Riemannian manifold with
boundary. Then A, determines the C*-jet of the metric at the boundary
in the following sense. If ¢’ is another Riemannian metric on M such that
Ag = Ay, then there exists a diffeomorphism ¢ : M — M, p|sar = Identity
such that g’ = p*g to infinite order at OM.

(b) n=2. Let (M, g) be a compact Riemannian manifold with boundary,
then Ay determines the conformal class of the C*-jet of the metric at the
boundary.

(¢)n = 2. Let (M,g) be a compact Riemannian surface with boundary.
Let v be a positive definite symmetric map from 1-forms to 1-forms. Then
the mapping Ag ~, as defined in (6), determines the C*-jet of the map v at
the boundary in the following sense: If v' is another such positive definite
symmetric map such that Ay = Ag . Then there exists a diffeomorphism
p: M — M, ¢logp = Identity such that v = .7y to infinite order at OM .
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In other words Lemma 1.1 shows that Conjectures A, B, C above are
valid at the boundary. The proof of this result is done in case a) by showing
that A, is a pseudodifferential operator of order 1. Its full symbol, calculated
in appropriate coordinates, determines the C'*°-jet of the metric g at the
boundary. The proofs of b) and ¢) are similar.

Lassas and the author proved Conjecture A in the real—analytlc case and
Conjecture B in general [12]. Moreover these results assume that A, is mea-
sured only on an open subset of the boundary.

Let I'" be an open subset of IM. We define for f, supp f C I

Ag.r(f) = Ag(f)

=
The first result of [12] is:

Theorem 1.2 (n > 3). Let (M,g) be a real-analytic compact, connected
Riemannian manifold with boundary. Let I' C OM be real-analytic end as-
sume that g is real-analytic up to I'. Then (Ag r,0M) determines uniquely

(M,g).

Notice that Theorem 1.2 doesn’t assume any condition on the topology
of the manifold except for connectedness. An earlier result of [14] assumed
that (M, g) was strongly convex and simply connected and I"' = M.

The second result of [12] is the proof of Conjecture B assuming we only
measure the DN map on an open subset of the boundary.

Theorem 1.3 (n = 2). Let (M,g) be a compact Riemannian surface with
boundary. Let I' C OM be an open subset. Then (Ayr,0M) determines
uniquely the conformal class of (M, g).

Sketch of proof of Theorem 1.2. M. Taylor simplified the arguments in
the proof of this result used in [12]. His proof follows the same basic idea
of [12] but avoids the use of sheafs in the details of the endgame of the
proof. Using this method we were able to extend Theorem 1.2 to the case
of complete Riemannian manifolds with boundary [13]. We include Taylor’s
proof of Theorem 1.2 below [20].

Let us assume that we have two Riemannian manifolds (M}, g;),j = 1,2
satisfying the conditions of Theorem 1.2 with I" C &M open and real-analytic
and AQ1|[‘ = A92|F' N

Using Lemma 1.1 we can find extensions M; of M, across I', with real-
analytic metrics, and there are neighborhoods O; of I' in M ; that are isomet-
ric; write @1 = O3 = 0. We write J\’/TJ = M;U0;, with closure J\//jj = Mj u@-.
Let us set .

Uj=M\M;, U =U=U. (18)

The key point is to use the Dirichlet Green’s kernel of ]\A/[/J with poles at
points in U to construct the desired isometry between My and M.
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For y € U, solve
Ay, Gy, (y) = =06y, Gj(r,y)=0 for z € M; = M,. (19)

We obtain maps

G;:M; — H*(U), foranys<2-—n/2, (20)

defined by .
gi(@)(y) = Gjz,y), we M yeU (21)

If s < 1—n/2 the maps G; are of class C'. Furthermore, these maps are
real-analytic on the subsets M;. Note that

DG, (z) : T,M; — H*(U) (22)

is given by
DG;(z)v =v-V,Gj(z,-). (23)

Lemma 1.4. The map DG;(x) is injective for each x € ]T/fj

Proof. In fact, if this map annihilates a nonzero v € Tl.]T/E, then v-V,G;(z,y)

= 0 for all y € U. This implies by real-analicity v- V,G;(z,y) =0 forall y €

M;\ {z}. Taking y = z +ev (using some local coordinate system) and noting

the asymptotic behavior of G(x,x + ev), we obtain a contradiction. O
From this we obtain:

Proposition 1.5. The map G; : ]\z — H*(U) is an embedding.

Proof. It remains to show that x; # x2 in ]Vf] = G;(z1) # Gj(z2). If not,
then

Gj(z1,y) = Gj(x2,y) (24)
for all y € U, hence, by analyticity, for all y € Mj. But G;(x1,-) is singular
only at y = z, so this gives z; = x,. O

The crucial result is the following.

Proposition 1.6. With the identifications Oy = Oy = O and Uy = Uy = U,
we have

G1=G2 on O. (25)
Proof. What we are claiming is that
Gi(z,y) = Ga(z,y), VaeeO, yel. (26)
To see this, fix y € U and solve

A, V=0 on My, V(r)=Gi(z,y) for z € X = M,. (27)
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The Dirichlet-to-Neumann hypothesis implies
V.V(z) =V.Gi(x,y), for z €T, (28)
which in turn, by the unique continuation principle, gives

V=G1(-,y) on ONMy;=0nN M, (29)

This implies V extends to My \ {y}, and we have V(z) = Ga(x,y), giving
(26). O

We aim to establish the following, which will imply Theorem 1.2.
Proposition 1.7. The sets G (]\Ajl) and Go(My) are identical subsets of H*(U).

To show that Ql(ﬂl) C gz(ﬁg), let By be the set of points = € ]Vfl such
that G;(x) € gQ(MQ), let C7 be the interior of By in Ml, and let D, be the
closure of C; in Ml . By Proposition 1.6, D is not empty. It suffices to show
that D; is open in Mj. As a first step, we have:

Lemma 1.8. Given x1 € Di, there exists x9 € ]\72 such that Ga(xa) =

Gi(x1).

Proof. We know there exist p; € Ml, g; € Mg such that p; — x;, and
G2(q;) = G1(p;)- If {g;} has a limit point in Ms, we can denote it zo and we

are done. The only alternative is that g; — M. Then Ga(g;) — 0in H*(U).
This would give G, (p;) — 0 in H*(U), and hence

Gi(xq1) = 0.
But in fact the strong maximum principle gives
Gi(x)(y) <0, Vyel,
so this shows the alternative is impossible. [
To proceed, we can use the following simple extension of Proposition 1.5.
Proposition 1.9. For each nonempty open set 2 C U, the maps
G2 My — H(Q) (s <1-n/2), (30)

given by composing (21) with the operation of restriction to {2, are embed-
dings. These maps are real-analytic on M; \ 2.
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Note that, given x; € Mj, we have
Gi(z1) = Ga(w) <= G’ (m1) = G’ (x2) (31)

where T, denotes the tangent space at u. .
Now let us get back to z1; € D;. We have x2 € My with Go(z2) = G1 (1),
hence
G5’ (22) = Gf (1) = u. (32)

Pick {2 disjoint from z; (in Ml) and from z5 (in Mg), SO ng is an analytic
embedding in a neighborhood of z;. Note that

TG (x1) = TuGS (x0) =V (33)

is a finite-dimensional subspace of the Hilbert space H®({2). Let £ denote
a linear subspace complementary to V (e.g., the orthogonal complement of
V with respect to a convenient inner product on H*(f2)). By the Implicit
Function Theorem, Q{Z(Ml) and G$(Ms,) are, near u, locally graphs of real-
analytic functions

G A — L, (34)

where 2 is an open set in V. Say u = (ug, ur) € V& L. Then, by the definition
of D1, ug is on the boundary of an open set on which @, = &,, so it follows
that ¢ = &5 on 2.

Consequently any x; € D; has a neighborhood whose image under Gi? is
contained in the image of G§’. In view of (31) this implies D; is open in M.
This proves Proposition 1.7 and hence Theorem 1.2. As for Conjecture C the
only known result is the case when M = 2 is an open subset of R" with
smooth boundary and g = (4;;) =: e is the Euclidean metric. More precisely
we have

Theorem 1.10 (n = 2). Let 2 C R™ be a bounded domain with smooth
boundary. Let v1,7v2 be two anisotropic conductivities so that

A

ey — Ae,'yz-

Then there exists ¢ : 2 — 2 diffeomorphism with 1|an = Identity so that

PVey1 = V2o

The proof of Theorem 1.10 follows from a combination of the results of [15]
and [17]. In [15] it was proven Theorem 1.10 for isotropic conductivities. One
then uses the results of [17] to reduce the anisotropic case to the isotropic
one by using the analog of isothermal coordinates in this case. The result
is that given an anisotropic conductivity, we can find a diffeomorphism ¢
so that ¢, is isotropic. We end by mentioning that the result of [15] uses
complex geometrical solutions, which will be discussed in the next section.
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for all complex frequencies p € C* -0, p-p = 0, not just large frequencies. For
another construction of these solutions which allow Lipschitz conductivities
see [3] (the result of [15] works for C? conductivities). Theorem 1.10 has
been extended to anisotropic non-linear conductivities in [16]. Alessandrini
and Barrugo have studied a special case of anisotropy with piecewise analytic
conductivities [1].

2 The Cauchy Data for the Schrodinger Equation

The only case of Conjecture A that has been settled in general is the isotropic
case in Euclidean space. Namely we have in the case that M = {2 an open,
bounded subset of R™ with a smooth boundary and the metric g is given by

gij = a(x)d;5, a>0 (35)
where d;; is the Kronecker delta. The following result was proven in [18].

Theorem 2.1. Let 2 C R™ n > 3 be a bounded domain with smooth bound-
ary. Let ¢, i = 1,2 be two isotropic Riemannian metrics satisfying (85).
Then Ag, = Ay, tmplies g1 = go.

The proof of this result proceeds by proving a more general result by
reducing the problem to consider the set of Cauchy data for solutions of the
Schrodinger equation (see [21] for more details).

Let n > 3. Let ¢ € L*({2). We define the set of Cauchy data for the
associated Schrédinger equation by

Ou
Cq= {(u|ag, %‘39) | (A—qu=0o0n 2, uc Hl(ﬁ)} . (36)
Theorem 2.2. Let q; € L™((2),i =1,2. Assume
th - CQ2'

Then q1 = qo.

The proof of this result uses complex geometrical optics solutions of the
Schrédinger equation. Let ¢ € L>(R™),n > 2 have compact support. Then
for p € C*, p- p =0, |p| sufficiently large, one can construct solutions to

(A—qu, =0
of the form
up = €90 (14 1y (z, p)) (37)
with
C

(s P B (2) < 0<s<1, (38)

|t
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for some C' > 0 independent of p.
The function ¥, (z, p) solves

Ap/‘/)q = (I(l + wq)v (39)

where
Ap(u) = e_<””‘p>A(e<"'”’>u).

The Schwartz kernel G, of A is the so-called Faddeev Green’s kernel [7].
The following estimate was proved in [19] (n = 2), [18] (n > 3) for —1 < & < 0
and pe C" —0,p-p=0:

Ifllzz,,
DR (40)

1Gpfllus < C

Here H denotes the Sobolev space associated to the weighted L? space with
norm given by

umﬁ:/mmmunmmn

A natural question is whether one can determine the potential by measur-
ing the Cauchy data on strict subsets of the boundary. The only result known
beyond the case of real-analytic potentials was proven in [4]. We describe the
result below.

We first modify the set of Cauchy data to allow for more singular distri-
butions on the boundary. We define the function space

HA(2)={ueD'(2)|uc L*), Auc L*(2)};
HA(S2) is a Hilbert space with the norm
HUH%IA(Q) = ||“||§,2(Q) + ||A“||%2(:z>~
For u € Ha(£2), we have ulpe € H™2(012) and 32|, € H 2(05). We
define the set of modified Cauchy data for ¢ € L™(£2) by

0 1., _3 i
C,= {(u|ag, 8_1:‘69) € H 2(02)x H 2(8!2)‘
(A-—q@u=0in 2, ue HA(_(Z)}.

If 0 is not a Dirichlet eigenvalue of A —g in {2 then C, contains the graph
of the Dirichlet-to-Neumann map A, conventionally defined on H'/2(02) by
the relation A4(f) = g_ﬂfm’ where u € H'(2) is a solution to the problem

(A—q@u=0 in 2, ulsn=[;

ie., {(£,Aq(f)) | f € HY2(02)} C C,.
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Fix £ € S"1 = {¢ € R, |¢] = 1}. We define
902, (§) ={z € 02| (v,€) > 0}, 002_(§) ={x € 02| (v§) <0} (41)
and for € > 0
082, (&) ={x €02 | (V&) >e}, ON_ (&) ={xz€d| (v <e}. (42)
We also define the set of restricted Cauchy data

Cpe = {(u|ag, g‘g‘an%(g)) ‘ (A—qu=0in 2, uc HA(Q)} .

The main result of [4] is

Theorem 2.3. Let n > 3 and ¢; € L>(82), i = 1,2. Given £ € S ! and
g >0, assume that Cg, . = Cy, .. Then ¢ = qa.

Theorem 2.3 has an immediate consequence in Electrical Impedance To-
mography. We assume here now 7 is an isotropic conductivity, i.e, 7v;; =
v(z)d;; with v € C%(f2) is a strictly positive function on 2. The Dirichlet-
to-Neumann map is defined in this case as follows:

A (f) = (7%) ’6(2

div AyVu=01in 2, ulsgn=7f.

It is easy to see that A, extends to a bounded map

where u solves

Ay H™3(002) — H™2(092).
As a direct consequence of Theorem 2.3 we prove

Corollary 2.4. Letvy; € C?(02), i = 1,2, be strictly positive. Given £ ¢ S*~1
and € > 0, assume that

Ay (Floe- ) = A (Dloa_ . Vf € HT2(00).
Then v1 = 7,.

As far as we know, Theorem 2.3 (Corollary 2.4) is the first global unique-
ness result for the Schrédinger equation (conductivity equation) in which the
Cauchy data are given only on part of the boundary, beyond the case of
a real-analytic potential.

A natural way to attack the problem of finding a potential from partial
information of the Cauchy data is to construct solutions of the form (37)
with 14 = 0 on part of the boundary. As it is shown in [9] it is impossible
in general to solve the Dirichlet problem for (39) with 1, decaying (or even
polynomially bounded in p.) In [4] it is shown that we can prescribe Dirichlet
conditions for ¢, on particular subsets of the boundary. More precisely we
have
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Lemma 2.5. Letn > 2. Let p € C" with p-p =0 and p = 7(& + in) with
¢,m € S™L. Suppose that f(-,p/|p]) € W2°°(82) satisfies O¢f = Opf = 0,
where O¢ denotes the directional derivative in the direction . Then we can
find solutions to (A — q)u =0 in 2 of the form

u(x, p) = etP (f(w, ﬁ) +1/1(1"P))7 Ylan_ @) =0,

with
(-, p)lL2(2) <

for some C' > 0 and 7o > 0.

y TZTUa

A1

The proof of Theorem 2.3 and Lemma 2.5 uses Carleman estimates for the
operator A,, which is not an elliptic operator if we consider the dependence
on the parameter p, to construct the solutions and prove the main result.
The use of a linear phase function in these Carleman estimates gives rise to
the restriction on measuring the Cauchy data on particular subsets of the
boundary.

Theorem 2.6. For q € L>({2) there exist 7o > 0 and C > 0 such that for
allu € C*(2), ulpn =0, and T > 19 we have the estimate

T2/ e~ T (@802 dm+T/ (€ )|e” @9 9,ul? dS
2 80,

<C (/ le @ (A — g)ul? da — 7'/ (€&, V)]e w0, u)? dS) .
o) 890

Sketch of the Proof of Theorem 2.3
As before we let ¢ € S™7!. Fix k € R™ such that (£,k) = 0. Using
Lemma 2.5, we choose a solution us € Ha(£2) to (A —g2)us = 0in 2 of the
form
ug = P2 (14 g, (, p2))
with

pQZTg_ik;_lv

where (I, k) = (I,£) = 0 and |k +1]? = 472 (with these conditions py - pa = 0).
In dimension n > 3 we can always choose such a vector [. Since Cg, = Cy, ¢,
there is a solution u; € Ha(£2) to (A — ¢1)u; =0 in {2 such that

[)m - 8UQ

utloq = uzloe, 5~ o0_.(6)  Ov lan_ (&)

Let us denote u := u; — ug and ¢ := q; — g2. We have

(A—q)u=qusin 2, ulpp=0.
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It is easy to see that ulsp = 0 and u € H,(£2) implies that u € H?({2). Also
Green'’s formula is valid for v € Ha($2). Thus we obtain

/(A— q1)ud dz :/ quo dx :/ u(A —ql)@dw—f—/ %vdS (43)
? ” fo} a0 Ov

Now, we choose
0= P (1 + g, (2, 1))

as in (36) to be a solution to (A — ¢;)v = 0, where

P1=—7’5—ik2_l

with £, k, and [ as before so that p; - p1 = 0. Notice that with this choice of
pj, 3 =1,2, we have

p1 + p2 = —ik.
With these choices of uz and v, the identity (51) now reads

/ qua® = ?—uv ds. (44)
n a0 OV

The final step in the proof is to show that the right hand side of (44) goes to
0as 71— 0.
By hypothesis,
6l,u|397v5(5) = 0.

Then we have

O s — O gs = s as.
80 3’/ B\BN_ . ov 8524 ¢ ov

The Cauchy-Schwarz inequality and the estimate ||v,, [|c(a02) < C7'/4, which
follows from (40) and the Sobolev embedding theorem, yields

[ .5008

0
/ B (Ut (2 1)) S
an, . ov

/ 8u
<
(&v)>e

v’
1/4 1/2
< C(1+7%)(Vol 9124 ) (/
(€

TTET (1 4 4y, (-, p1))| dS

[N

le™ &2 5,y dS)

w)2e
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for some C' > 0. Now we use the Carleman estimate of Theorem 2.6 to obtain
TE / le T2 9, ul?dS < T/ (€& x)|e 79, u)? dS
Jon, . 092,
< | eTmENA — gyl d
7}
= / )e‘T<5””>un|2 dx
”

2 .
<2(llqull oo ) + gzl (@)~ (1 + 12Tz 0)-

Hence, we have proved that

(46)

/ @@dS <Cr V50, 17— 0.
a0 Ov

Now letting 7 — oo gives

/ e‘“z‘k)q(:z:) dr =10
Q

for all k L ¢. Changing € € S™ ! in a small conic neighborhood and using the
fact that g(k) is analytic we get that ¢ = 0 finishing the proof of Theorem 2.3.

Sketch of Proof of Corollary 2.4.

It is well known that we can reduce the problem to the case of the
Schrodinger equation using the transformation w = 'ﬁu. If u solves (42),
then w solves

(A—qw=0in
Ay

with ¢ = ak It is easy to see that

1 1 8
Ag(f) =72 londy (v 2 lanf) + %(7_13_3)|anf'

Now Kohn and Vogelius showed in [10] that given any open subset I" of 042,
if we know A, (f)|r for all f then we can determine ~v|p and %‘1‘, reducing
therefore the proof of Corollary 2.4 to Theorem 2.3.

Conjecture D

It is natural to expect that one needs to only measure the following subset
of the Cauchy data to recover the potential. Let I be an arbitrary open subset
of the boundary. We define

Cqr = {<u)(m7 % F) ’ (A—=qu=0in 2, u € HA(!Z)} . (47)

The conjecture is that if we know C; ;- then we can recover the poten-
tial gq. It would also be interesting to prove stability estimates and give a
reconstruction of the potential under the conditions of Theorem 2.3.
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3 Semiclassical Complex Geometrical Solutions

As it was noted in the previous section we cannot solve the Dirichlet prob-
lem for v, satisfying (39) with polynomial control on the growth of ¥ for p
large. However, in [6] it is shown that we can construct approximate complex
geometrical solutions of the Schrédinger equation concentrated near planes
for large complex frequencies. In some sense these are analog of Gaussian
beams for the case of standard geometrical optics and they can be considered
as “semiclassical solutions” for the complex principal type operator 4,. It is
also shown in [6] that by measuring the Cauchy data of these approximate
solutions on a neighborhood of the intersection of a plane and the boundary
one can determine the two plane transform of the potential [8]. We define by

Z={peC*-0:p-p=0},
the (complex) characteristic variety of A. Each p € Z can be written as
p= }p‘ﬁ = %|p|(w3 +iwr) € R+ (S™71 +iS"71), with wg - w; = 0. For
peZ, let A, =A+2p-V. Then

Ay —gla) = e (A — g(x))e™ 0, (48)
so that, with v(z) = e® P yu(z),
(4 — g@))u@) = w(x) & (A - g@)o(@) = ePw(z)  (19)

and, in particular, (A, — ¢(z))u(z) =0 & (A — g(z))v(z) = 0.

Now, given a potential g(x) and a two-plane II, we will construct an
approximate solution ugp, to the Schrédinger equation supported near II.
We denote by dAj; two-dimensional Lebesgue measure on IT. We also recall
the definition of the variant of d\j; relative to £2 for the case that 92 is C!
and II intersects 0f2 transversally (for the general case see [6]),

<d\G f>=<dip,f-xa >
where x denotes the characteristic function of 2.

Theorem 3.1. Let {2 be a bounded domain with smooth boundary and q(x) €
H*(§2) for some s > &. Then, for any 0 < < i fized, the following holds:
3 € > 0 such that, for any p = %[pi(wlq +iwr) € Z and any two-plane II

parallel to Iy = span{wgr,wr}, we can find an approzimate solution gy, =
Uapp(x, p, IT) to (A, — q(x))u = 0 satisfying

1
lwappll 2@y < Co tapplire(e) ~ [)\g(ﬂm 2)]7 as |p| — oo (50)

2
supp (Uqpp) C {x eR"™: dist (z,IT) < W} (51)
p
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and

Y

Ce
”(Ap - Q)uapp“L2(R") < W (52)

In fact, as will be seen below, uqpp = up + u1 With uo depending only on I7
and |p| and satisfying (50.)
We then modify ug suitably to satisfy the other conditions.

Remark Let € be as in Theorem 3.1. Let —1 < § < 0. By using the estimate
(40) for Faddeev’s Green’s kernel we can construct a true solution u of (A —
q)u = 0 in §2 of the form

u = ug + uy + ug with ||u2||H§ < Clpt_lwse, 0<s<1. (53)

where the constant C' > 0 depends only on ||g||L~ and the diameter of {2.

Sketch of proof of Theorem 3.1

We use the rotation invariance of A and the invariance of Z under S* =
{e?}, and note that it suffices to treat the case p = |p|(e1 + iez), where
{e1,...,en} is the standard orthonormal basis for R™. Write z € R™ as
r = (2/,2") € R? x R"? and similarly £ = (¢/,¢").

If IT is parallel to span{wg,ws} = span{ei, ea} = R? x {0}, then IT =
span{ey, ez} + (0,z)) for some x/ € R*~2. Given |p| > 1 and z{ € R" 2, we
will define an approximate solution u(z, p, IT) to (A, — ¢(z))u = 0 on R", of
the form u(z, p, I[I) = uo(z, p, II) + ui(z, p, IT).

For notational convenience, we will usually suppress the dependence on
p and IT and simply write u(z) = uo(z) + u1(z). We will use various cutoff
functions x;, for j even or odd, x; will always denote a function of 2’ or z”.
respectively. Also, B™(a;r) and S™!(a;r) will denote the closed ball and
sphere of radius r centered at a point a € R™.

Construction of ug

To define ug, first fix xo € C$°(R?) with xo = 1 on B%(0; R) for any
R > sup{|z’| : (z/,2") € 2 for some " € R"?}; let Co = [xollr2(m2)-
Secondly, let 1, € C5°(R™ ?) be radial, non-negative, supported in the unit
ball, and satisfy

/ (7,[11(1'//))261.%" -1
Rn—2

Now, for 3 > 0 to be fixed later, we let § be the small parameter § = |p|*

and define ) .
xi(@") =6 Ty (x _5”—°>

so that

Ix1lle2@n-2) = [¥1]lL2@n—2y =1, V0 > 0. (55)
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Set ug(z) = uo(z’,x") = xo(2')x1(2z"); then ug is real, |Jug|r2mn) = Co
and ||uollz2(0) — An(II N )]z as § — 0%, ie., as |p| — oo. Note also
that |Juo||gr < 071 = ¢|p|?, so that ||ug||g- < c|p|*? for 0 < s < 1. Since
A, =A+2p-V=A+2pl(es +iez) V=A+4|p|0y and pLlR" 2

(Ap = q(x))uo = (Axo) - x1 +2(Vx0) - (Vx1) + x0(Ax1)
+2(p - V)(x0)x1 + 2x0(p - V)(x1) — axoXx:
= Xo(z)(Azr — q)(x1)(z"") on B*(0; R) x R""2,

the first and fourth terms after the first equality vanishing because (p -
V)(x0) = 20x0 = 0 on B%(0; R), and the second and fifth equaling zero
because Vy; LR?.
Construction of u;.

To define the second term in the approximate solution, u (), we make use
of a truncated form of the Faddeev Green’s function, G,, and an associated
projection operator. The operator A, has, for p € Z, (full) symbol

a(€) = ~[(|€]* = 2lplwr - ) +i2/pl(wr - )], (56)

and so for ‘—% = e + ez, we have

a(€) = — (1€ — Inle2l” — 1pl*) + i(2lpl1)],

which has (full) characteristic variety

Lo ={6eR": & = 0,[6 — |plez| = |pl} (58)

= {0} x §"2((|o]0,...,0); o]) C Re, x REL.

The Faddeev Green’s function is then defined by G, = (—a (&) 1) € S'(R™).
We now introduce, for an ¢y > 0 to be fixed later, a tubular neighborhood of
X

f2l
1
T, ={€: (& Z,) <lpl727%}, (59)
as well as its complement, T’ pC , and let xr,, Xre be their characteristic func-
tions. Define a projection operator, P,, and a truncated Green’s function,
G, by

Po}(€) = xz,(€) - f(6) and (60)
(GoD)ME) = xze (8) - [~o (O] F(€) (61)

for f € (R™). Note that Apép =1-P,.
Choose a 13 € C§°(R™~?), supported in B"2(0;2), radial and with 15 =

1 on supp (11), and set 3 (") = (5%
uy(x, p, IT) in the approximate solution by

). We now define the second term,

ui(x) = —x3(2")Go((Ap + q(x))uo(x)) (62)
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and set u(z) = up(z) + ui(z). Then uy (as well as up) is supported in {z :
dist (z, IT) < 24}, yielding (51). We will see below that {uy]| 120y < Clp|~¢
as |p| — o0, so that the first part of (50) holds as well. To start the proof of
(52), note that
(Ap = a)(uo + u)
= (4, — quo — (A, — )xaG,((4, — ) 0)
= (4 — quo — x3(4 ) p((4p — ¢)uo)
14 -a XB]G/J((A/) — q)uo)
= (A, = Quo — x3(I = P,)(4, = @uo — x34G,(A, — q)uo
= 2(Vxs - Var)Gp(Ay + a0 = (A x3)Gp(Ay ~ guo
= x3Lp(4, = q)uo
—[Faxa +2(Vxs - Vi) = (Ayrxa)|G (4, = q)ug
on {2, since x3 = 1 on supp (x1). Now, since g1x3 € L™, |[Vx3| < Cs ! =

clp|? and |Apxs| < C672 = c|p/??, (52) will follow if we can show that for
some € > 0,

1P,(A, — @)uoll L2y < Clol™¢, (63)
11D"1G (4, — q)uollL2(y < Clp|?7¢, and (64)
1G (A, — @)uoll L2y < Clol =2, (65)

with C' independent of |p| > 1. Here D” denotes differentiation in the z”
variables. The details of the proof of these estimates can be found in [6] and
we omit then.
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